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A mesoscopic model is developed for static and dynamic simulations of nanomechanics of carbon nanotubes
sCNTsd. The model is based on a coarse-grained representation of CNTs as “breathing flexible cylinders”
consisting of a variable number of segments. Internal interactions within a CNT are described by a mesoscopic
force field designed and parameterized based on the results of atomic-level molecular dynamics simulations.
The radial size of the CNTs and external interactions among multiple CNTs and molecular matrix are intro-
duced through a computationally efficient “virtual surface” method that does not require explicit representation
of the CNT’s surfaces. The mesoscopic model is shown to reproduce well the dynamic behavior of individual
CNTs predicted in atomistic simulations at a minor fraction of the computational cost.
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I. INTRODUCTION

Since their discovery in 1991,1 both single- and multi-
walled carbon nanotubessCNTsd have been investigated rig-
orously for their excellent mechanical and physical proper-
ties at a very low density. Recent reviews summarize
theoretical and experimental results on the nanomechanics,
and on the chemical and electronic properties of CNTs.2–7

From the mechanical characteristics viewpoint, the high as-
pect ratio, high stiffness, flexibility, and strength of CNTs
suggest that they can be considered as ideal reinforcing
nanofibers in nanotube-matrix composites.8

Despite the great interest in the mechanical and physical
properties of CNTs and CNT-based nanocomposites, there
have been no computational studies addressing the dynamic
behavior of multiple CNTs in a matrix. Computational efforts
have been largely limited to quasistatic molecular dynamics
sMDd simulations of individual nanotubes, either isolated9–11

or surrounded by polymer molecules.12–15Although investi-
gation of the mechanical properties of individual nanotubes
and adhesion between nanotubes and polymer matrix are
necessary elements in the analysis of the mechanical behav-
ior of nanocomposites, the processes of plastic deformation
and fracture of nanocomposite materials can have complex
collective character that cannot be derived directly from the
properties of individual components and can only be ad-
dressed in simulations performed at the length scales charac-
teristic of multiple interacting nanotubes; i.e., at a mesos-
copic level.

Dynamic simulations of the nanomechanics of multi-
walled nanotubes, bundles of single-walled nanotubes,
single-walled nanotubes in continuously spun fibers, and
nanotubes in polymer composites have been hindered by the
absence of appropriate mesoscopic models. For CNTs, the
descriptions originating from continuum mechanics, e.g.,
elastic shell or beam models have been proposed,16–20 and
critically reviewed in Ref. 21. While the analogy with mac-
roscopic beams and shells can provide a convenient tool for
analysis and description of the mechanical properties of

CNTs, the continuum models are hardly applicable for direct
dynamic simulations at a mesoscopic level. A fully three-
dimensional dynamic simulation of a nanotube represented
by the finite element method22 can be computationally as
expensive as an atomistic MD simulation.

In this paper we present a mesoscopic model capable of
simulating systems containing multiple interacting CNTs
with modest computing requirements. The model provides a
coarse-grained description of the dynamic behavior of CNTs
and, at the same time, incorporates the essential physics from
the finer satomicd level. The conceptual description of the
model that includes coarse-grained descriptions of both
CNTs and molecular matrix, is given in Sec. II. Parametriza-
tion of the model representation of individual CNTs, based
on the results of atomistic MD simulations, is described in
Sec. III. The results of mesoscopic dynamic simulations of
free motion of individual nanotubes are presented and com-
pared to the predictions of the atomistic simulations in Sec.
IV. The capabilities, limitations, and the potential areas of
application of the model are briefly outlined in Sec. V.

II. MESOSCOPIC FORCE FIELD (MFF) MODEL
FOR CNTs

In this section we provide a general description of a me-
soscopic model designed to describe the dynamic behavior
of individual CNTs, the collective dynamics of multiple
CNTs, and interaction of CNTs with an organic matrix. The
combination of the mesoscopic representation of CNTs with
existing coarse-grained models for molecular systems and
polymers23–26 provides a general computational framework
for the dynamic simulations of CNT-polymer nanocompos-
ites at time and length scales that are not accessible to either
atomistic or continuum computational methods. Practical ap-
plication of the model to nanocomposites, though, has to be
preceded by a careful parametrization of CNT-polymer inter-
action performed for particular polymer matrixes.

In the mesoscopic model, each single CNT is modeled as
a “breathing flexible cylinder” represented by a variable
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number of segments, as shown schematically in Fig. 1sad.
The segments are defined by a set of nodes that are located
along the nanotube axis, with the length of each segment
defined as the length of the nanotube section between two
adjacent nodes. The segment length can vary along the nano-
tube depending on the local transverse curvature. The de-
grees of freedom, for which equations of motion are solved
in dynamic simulations, are the nodes defining the segments,
the local radii of the cylinder at the cross sections through
the nodes, and the torsion angles at the nodes. The internal
interactions within the nanotube are described through a
MFF consisting of terms for stretching, bending, torsion, ra-
dial breathing, and the coupled stretching-bending,
stretching-torsion, and stretching-breathing interactions. This
description allows one to reproduce deformation of nano-
tubes under complex loading conditions that can be realized
in a nanocomposite material during processing or under dy-
namic or static loading conditions.

A general formulation of the model for CNT-polymer
nanocomposites can be based on the following LagrangianL,
which describes the system of interacting CNTs and matrix
molecules/polymer units:
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wherer i
t is the position ofith node in a nanotube,rk

m is the
position of kth unit of the matrix,Ri

t is the radius of the
nanotube at nodei, Rk

m is the radius of matrix unitk, ui is the
torsion angle at nodei, mi

t=smi−1,i +mi,i+1d /2 is the mass of a
part of the nanotube, represented by the nodei, mi,i+1 is the
mass of the segmenthi , i +1j of the nanotube located be-
tween nodesi and i +1, mk

m is the mass of thekth unit of the
matrix,Mi

t andMk
m are the inertia parameters25 of the internal

breathing motion of the nanotube at nodei and matrix unitk,
respectively,Mi

u is the inertia parameter for the twisting mo-
tion of the nanotube. The potential energy of the system is
composed of terms describing the internal energy of nano-
tubes sUstr,Ubnd,URt,Uu ,Ustr-R,Ustr-bnd,Ustr-ud, bonded
sUm-msbonddd and nonbondedsUm-md interaction among the
matrix units, bonded and nonbonded interaction among the
nanotubes and matrix unitssUt-t ,Ut-m,Ut-msbonddd, and inter-
nal breathing motion of the matrix unitssURmd. In particular,
Ustr is the internal stretching potential defined as a function
of the axial deformation of the nanotube segments;Ubnd is
the bending potential defined as a function of the local cur-
vature of the nantotube segments;URt is the internal breath-
ing potential defined as a function of the local radiiRi

t at each
nodei along the nanotube;Uu is the torsion term defined as
a function of the torsional deformation of nanotube;Ustr-R

andUstr-bnd are the potential energy terms that describe cou-
pling between stretching of two segments adjacent to a node,
radial contraction at the node and local curvature at the node;
Ut-m is the potential for nonbonded van der Waals interaction
between matrix molecules and nanotubes;Ut-msbondd de-
scribes the bonded interaction between matrix molecules and
nanotubes due to the formation of chemical bonds;Um-m and
Um-msbondd describe the nonbonded and bonded interactions
among the matrix units; andURm is the internal breathing
potential25 for the matrix units.

The functional forms of the potentials can be chosen
based on the results of experimental investigations and/or
atomic-level simulations. In particular, data on the vibra-
tional dynamics of the low-frequency modes of the nano-
tubes slongitudinal stretching, radial breathing, transverse
flexion, and torsional twistd2,5,20,27as well as available data
on the mechanical response of an individual CNT to external
loading, such as stress-strain dependence for stretching,
bending, and twisting of nanotubes,2,5,9,10,16,27–30can be used
to find the force constants in the corresponding terms of the
internal force field that controls the dynamics of the nano-
tube. Analytical functions can be used at small deformations,
whereas tabulated values of energies and forces can be used
to describe complex behavior at large deformations.

The nonbonding interaction among the nanotubes and ma-
trix units, Ut-m andUt-t, is described by a corrugated poten-
tial field, as schematically shown in Fig. 1sad, whereas stron-
ger chemical crosslinks between polymer groups and CNTs
are included explicitly into the force field. The corrugated
potential does not allow the dynamic elements of the model
to roll over one another without slipping. Parametrization of
the corrugated potential based on the results of atomistic
simulations is currently pursued. The equilibrium distances
in the interaction potentialsUm-m,Ut-m,Ut-t, andUt-msbondd are
defined in terms of the distances between the edges/surfaces

FIG. 1. Schematic representation of a section of nanotube rep-
resented by four segments and five nodessad. The position ofith
node in the nanotubesrW i

td, the radius of the nanotube at node
i sRi

td, and the torsion angle at nodei su i
td, are the independent

variables that describe the behavior of the nanotube. The sizes of
the nanotube, matrix molecule, and the amplitude/period of the cor-
rugated potential are not shown to scale. The model can be used in
mesoscopic simulations of collective dynamics of nanotubes in a
matrix sbd.
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of the nanotubes and matrix units, e.g.,rs
t-m in Fig. 1sad,

rather than their centers. Earlier, this description has been
implemented in a mesoscopic model used for simulation of
laser ablation of multicomponent organic systems.25,26 This
choice of equilibrium distance is based on the physical con-
cept that the dynamic behavior and cohesion in a nanocom-
posite is governed primarily by the interaction among atoms
on the outside of macromolecules or CNTsssingle- or mul-
tiwalledd and allows an easy means of simulating complex
multicomponent systems, such as nanocomposites containing
CNTs and molecules of different sizes.

Once the potential energy of the system is defined, the
equations of motion for the five sets of independent variables
in the systemhqj=hrW i

t ,rW k
m,Ri

t ,Rk
m,uij can be directly obtained

from the Lagrangian given by Eq.s1d, as

d

dt

]L

]q̇i

−
]L

]qi
= 0. s2d

The equations of motion for the independent variables can be
integrated and classical trajectories can be obtained in a man-
ner similar to the traditional molecular dynamics technique.
The trajectories provide complete information on the dynam-
ics of the nanotubes and the matrix molecules at the mesos-
copic length scale. A search for the equilibrium molecular/
CNT configurations can be performed by the Metropolis
Monte Carlo method, in which the potential energy calcula-
tion is used to generate a sequence of configurations with
probabilities defined by a desired statistical-mechanics distri-
bution. A significant advantage of the MFF model described
above is that it does not require an explicit representation of
the surface of the nanotube. Rather, the distances between
the “virtual surfaces” of the dynamic elements of the model
are calculated “on the fly,” only when needed to define a
particular external interaction. This representation of the
shapes of the dynamic elements in the model drastically re-
duces the number of the independent degrees of freedom and
increases computational efficiency of the model.

The first tests of the MFF dynamics model reported in this
paper are done for individual nanotubes and the initial pa-
rametrization of the terms responsible for the free motion of
a nanotube is based on the results of atomistic MD simula-
tions as discussed in Sec. III. An advantage of using a single
set of atomistic MD simulations in parametrization of the
model is the ability to directly compare the predictions of the
mesoscopic and fully atomistic models. The comparison of
the dynamic behavior of individual nanotubes represented at
the atomic and mesoscopic levels is reported in Sec. IV and
is used to analyze the capabilities and limitations of the me-
soscopic model.

III. PARAMETRIZATION OF MFF FOR AN INDIVIDUAL
CNT FROM ATOMISTIC MD SIMULATIONS

The functional form and force field parameters for the
stretching, bending, and torsion contributions to the mesos-
copic force fieldfEq. s1dg are determined in a series of qua-
sistatic atomic-level MD simulations performed with semi-
empirical many-body Brenner interatomic potential.31 The

atomistic simulations are performed for nine nanotubes of
different radii; namely,s5,0d, s5,5d, s10,0d, s15,0d, s10,10d,
s20,0d, s25,0d, s15,15d, s30,0d. The results of the atomistic
simulations and corresponding terms of the mesoscopic force
field are described below.

A. Stretching term of the MFF

In the simplest linearsharmonicd approximation, the inter-
nal stretching potential,Ustr, is defined as a function of the
axial deformation of nanotube segments:

Ustr = o
i=1

N−1

Li,i+1
0 1

2
kstr«i,i+1

2 = o
i=1

N−1

Li,i+1
0 1

2
kstrSLi,i+1 − Li,i+1

0

Li,i+1
0 D2

,

s3d

whereLi,i+1
0 is equilibrium sunstrainedd length of a segment

betweeni andi +1 nodes of the mesoscopic representation of
the nanotube,Li,i+1 is current length of the segment between
i and i +1 nodes that can be expressed through the positions
of the nodes,Li,i+1= urW i+1

t −rW i
tu, «i,i+1 is local axial strain of the

segment, andkstr is stretching force constant.
In order to determine the values of the stretching force

constant, we perform a series of atomistic simulations for
nanotubes of different radii. A periodic boundary condition
in the direction of the tube axis is used to simulate stretching
of infinitely long isolated nanotubes. Computational cells
containing two and three CNT unit cells are used in simula-
tions of armchairsn,nd and zigzagsn,0d nanotubes, respec-
tively. The axial strain is applied by changing the size of the
computational cell along the nanotube axis and performing
energy minimization by simulated annealing. Here and in
other energy minimization simulations described below, the
time of the simulated annealing is chosen to ensure that the
total energy of the system does not change by more than
0.001 eV during the last 100 ps of the simulations. Simula-
tions at four values of the axial strain,20.02, 20.01, 0.01,
and 0.02, are performed and the force constants are calcu-
lated through the second derivative of the strain energy with
respect to the axial strain. The results of the calculations are
shown in Fig. 2sad. For nanotubes with radii larger than
,4 Å, the dependence of the stretching force constantsin
eV/Åd on the equilibrium radius of the nanotubeReq

r sin Åd
can be relatively well described by a linear dependence, as

kstr = 86.64 + 100.56Req
r . s4d

For nanotubes with radii larger than 4 Å, the values of the
force constant expressed in units of energy per atom are es-
sentially independent of the radius and chirality of the nano-
tube and fall within 2 eV/atom range around the average
value of 46.8 eV/atom. Somewhat higher values of 52.0 and
51.7 eV/atom are calculated fors5,5d and s5,0d nanotubes
having radii of 3.44 and 2.07 Å, respectively. The force con-
stants for the small radius nanotubes expressed in energy per
unit lengthfFig. 2sadg, are smaller as compared to the larger
radius nanotubes. This is related to a more significant elon-
gation of the small-radius nanotubes during the initial struc-
tural relaxation performed with fully atomistic MD. The re-
sults on the stretching force constants reported above are in
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good agreement with earlier calculations performed with
Brenner potential32 as well as withab initio calculations
based on the local density approximation to the density func-
tional theory.27 The values of ,59 eV/atom32 and
,56 eV/atom27 are reported in these works for the stretch-
ing force constants. Note that the purpose of the atomistic
simulations reported in this work is not to verify or confirm

the results reported earlier, but to provide a consistent param-
etrization of different terms of the MFF described by Eq.s1d.

The calculation of the stretching force constant discussed
above is performed for a small range of the axial strain, from
20.02 to 0.02, in which no deviations from the quadratic
dependence of the strain energy on strain is observed. It is
known that buckling of CNTs at large compressions or for-
mation of Stone-Wales rotation defects at large tensile
stresses leads to a drop in the stiffness of the nanotube. These
effects can be incorporated into the MFF as needed by de-
fining switching functions and criteria for transition between
different regimes of nanotube deformation. As the model is
aimed mainly at large-scale phenomena, local changes in
shapes of the nanotubes associated with nonlinear behavior
at large deformations are not expected to play a major role
and representation of CNTs as cylinders may still remain
valid in the nonlinear elastic/plastic regime.

B. Bending term of the MFF

The internal bending potentialUbnd is defined as a func-
tion of the curvature of nanotube segments:

Ubnd=
1

2
kbndo

i=1

N−1

Li,i+1
0 S 1

Ri,i+1
curv D2

<
1

2
kbndo

i=2

N−1H1

2
Li,i−1

0 S 1

Ri
curvD2

+
1

2
Li,i+1

0 S 1

Ri
curvD2J , s5d

whereLi,i+1
0 is equilibriumsunstrainedd length of the segment

betweeni and i +1 nodes,Ri,i+1
curv is radius of curvature of the

segment defined by thei and i +1 nodes,Ri
curv is radius of

curvature at nodei, andkbnd is the bending force constant.
Similar to the stretching force constant discussed above in

Sec. III A, the values of the bending force constant are de-
termined in a series of atomistic simulations performed for
nanotubes of different radii. Larger computational cells con-
taining 13 unit cells for armchair nanotubes and 15 unit cells
for zigzag nanotubes were used in the simulations. No peri-
odic boundary conditions are applied in the simulations. The
CNTs are initially bent with a constant radius of curvature
that is varied between 22 528 and 4528 Åscorresponding to
the bending angles from 0.0025 to 0.0127 deg/Åd. The bent
nanotubes are then allowed to relax for 1.5 ns in annealing
simulations performed with the end segments fixed. The
force constants are calculated through the second derivative
of the strain energy with respect to the curvature, and the
results of the calculations are shown in Fig. 2sbd. The depen-
dence of the bending force constantsin eV Åd on the equi-
librium radius of the nanotubesin Åd can be described by a
power law fit, yielding the following expression:

kbnd= 63.80Req
r 2.93, s6d

which is close to the cubic dependence of the bending force
constant on the radius expected for an elastic tube.

The calculated bending stiffness is in good agreement
with the values obtained from tight-binding simulations, in
which the values of 2.083104 and 1.953104 eV Å are re-
ported fors10,10d ands12,8d CNTs, respectively.33 The bend-

FIG. 2. Force constants of the stretching, bending, and torsion
energy terms of the mesoscopic force field determined from a series
of quasistatic atomistic simulations performed with Brenner inter-
atomic potential for nanotubes of different radii. Lines correspond
to linearsad and power lawsb,cd fits of the data points, with corre-
sponding expressions shown in the figures.
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FIG. 3. sColor onlined Strain energy distributions in atomisticsa,bd and mesoscopicscd simulations of an acoustic wave propagation
in a 395 Å longs10,10d CNT. The value of the strain energy density is shown by the color scale: light blueslight gray in print gray-scale
versiond color corresponds to zero energy, redsdark gray in print gray-scale versiond color corresponds to the energy density of
0.002 eV/atom. In the atomistic simulation, the distribution of the strain energy at atomic level is shown insad and the energy averaged over
,1 nm long segments defined in the mesoscopic model is shown insbd. The nanotube is represented by 39 nodes in the mesoscopic model
and by 6440 atoms in the atomistic MD model. Arrows show schematically the paths of the acoustic wave.
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ing force constant of 1.903104 eV Å is measured for
s10,10d CNT in our MD simulations performed with empiri-
cal Brenner potential.

Nonlinear elastic phenomena, such as rippling34,35 or
buckling16,29 of CNTs at large bending angles, can substan-
tially reduce the effective bending stiffness of the nanotube.
The effect of nonlinear bending deformation can be incorpo-
rated into the MFF as needed by defining switching functions
and criteria for transition between different regimes of nano-
tube deformation. The calculation of the bending force con-
stant discussed above was performed for a small range of
bending angles for which no deviation from the quadratic
dependence of the strain energy on curvature is observed.

C. Torsion term of the MFF

The torsion term in the MFFsUud is defined as a function
of the torsional deformation of nanotube segments:

Uu = o
i=1

N−1

Li,i+1
0 1

2
ktSui − ui+1

Li,i+1
0 D2

, s7d

where ui is torsion angle at nodei and kt is torsion force
constant.

The values of the torsion force constant are determined in
a series of atomistic simulations performed for nanotubes of
different radii. Computational cells of the same size as in
bending simulations described above are used in the simula-
tions. The CNTs are initially twisted with a constant torsional
deformation along the nanotube, which was varied between
0.0025 to 0.0127 deg/ Å. The twisted nanotubes are then
allowed to relax for 1 ns in annealing simulations performed
with the end segments fixed. The force constant calculated
through the second derivative of the strain energy with re-
spect to the torsional deformation is shown in Fig. 2scd. For
nanotubes with radii larger than,4 Å, the dependence of
the torsion force constantsin eV Å/rad2d on the equilibrium
radius of the nanotubesin Åd can be described by a power
law fit, yielding the following expression:

ktrs = 38.44Req
r 3.01, s8d

which is close to the cubic dependence on the radius ex-
pected for a twisted hollow cylinder.

The torsion force constant of 1.33104 eV Å/rad2 calcu-
lated in this work fors10,10d CNT is in a reasonable agree-
ment with values obtained in tight-binding simulations,
1.733104 eV Å/rad2 for a s10,10d CNT, and 1.463104 and
1.633104 eV Å/rad2 for left and right twists of as12,8d
CNT, respectively.33

Large torsional deformations of CNTs can lead to devia-
tions from the linear elastic response, e.g., buckling of a
twisted s10,10d CNT has been reported in a computational
study34 at a shear strain of 5%. Similar to the nonlinear be-
havior in stretching and bending deformations, the effect of
nonlinear torsional deformation can be incorporated into the
MFF if large deformations are expected to take place in the
simulations.

IV. FREE VIBRATIONS OF INDIVIDUAL CNTs:
MESOSCOPIC AND ATOMISTIC SIMULATIONS

As a first test of the mesoscopic model and the parametri-
zation described above, we perform a series of simulations of
a free motion of a single-walled CNT with both the mesos-
copic and fully atomistic MD models. The initial conditions
in the simulations are chosen to provide targeted testing of
the two terms of the MFF discussed above; stretching and
bending. The torsion angle in the mesoscopic model is only
weakly coupled to other independent variables through the
torsion-stretching coupling term. As a result, torsional mo-
tion of an isolated nanotube is trivial and is not discussed in
this paper. The role of the radial breathing term and the cou-
pling terms in the LagrangianfEq. s1dg is to provide a higher
order of accuracy in the description of the dynamic behavior
of CNTs and to facilitate the energy transfer between differ-
ent modes during motion. A direct comparison between the
results of the mesoscopic and atomistic simulations de-
scribed below suggests that the omission of these terms has a
relatively minor effect on the dynamic behavior of the me-
soscopic representation of an individual CNT. For some of
the potential applications of the model, however, high accu-
racy in the dynamic behavior of the model may be essential,
and fine tuning of the mesoscopic force field through the

FIG. 4. Velocity of the farsrightd end part of a 395 Å long
s10,10d CNT in atomisticsad and mesoscopicsbd simulations of an
acoustic wave propagation, illustrated in Fig. 3. In the atomistic
simulation, the velocity is averaged over atoms that belong to the
,1 nm long end segment of the CNT, in the mesoscopic simulation
the velocity of the end node is plotted.
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coupling terms may be required. Therefore, we retain the
coupling terms in the general formulation of the model,
given in Eq.s1d.

A. Acoustic wave propagation

Acoustic wave propagation is simulated in a 395 Å long
s10,10d CNT represented with MFF and atomistic models.
The wave is generated by creating a local tensile strain of 2%
in a ,50 Å end part of the CNTsleft end in Fig. 3d at the
beginning of the simulations and allowing the systems to
evolve freely at later times. In the atomistic MD simulation
thes10,10d CNT is represented by 6400 carbon atoms and 40
hydrogen atoms. The hydrogen atoms are used at the ends of
the nanotubes20 atoms at each endd to terminate dangling
bonds and to ensure stability of the nanotube. The inter-
atomic interaction is described by the Brenner potential for
hydrocarbons, which is the potential used to deduce the MFF
as described in Sec. III. In the MFF model, the CNT is rep-
resented by 38 segments connecting 39 nodes, with each
segment having equilibrium lengthLi,i+1

0 of ,10.4 Å and a
massmi,i+1 of 2022 amu,i =1, … , 38.

A visual picture of the acoustic wave propagation is given
in Fig. 3, where the evolution of the strain energy is shown
for different times during the simulations. The strain energy
distributions in the atomistic MD simulations are shown with
atomic-level resolution in Fig. 3sad. It can be seen that ini-
tially there is a uniform local strain energy distribution in the
strained left end of the CNT. As time progresses, the relax-

ation of the initial tensile stresses in the left part of the nano-
tube leads to the formation of a bimodal stress wave that
propagates through the nanotube. The wave consists of a
tensile component that propagates first and a compression
component that follows. The bimodal structure of the wave is
a result of the interaction of the initial tensile stresses with
the free surface. Both the tensile and compression compo-
nents of the wave show up in Fig. 3 as red regions of high
strain energy separated by a light blue/green band that cor-
responds to the transition from expansion to compression. By
,2 ps, the acoustic wave reaches the farsrightd end of the
nanotube and reflects back. Upon reflection, the stress wave
changes signsthe compression component now leads and the
tensile component followsd. While one can notice from the
figure that there is some dissipation of the energy of the
wave with time, the wave packet still contains the largest
fraction of the initial strain energy and can be clearly identi-
fied at all times during the simulation.

A mesoscopic simulation performed for the same initial
conditions as the atomistic one is illustrated in Fig. 3scd. In
order to quantitatively compare the results of the mesoscopic
and atomistic simulations, the same color scale is used to
show the energy density in both simulations, from light blue
color corresponding to zero energy, to red color correspond-
ing to 0.002 eV/atom. Moreover, an alternative representa-
tion of the potential energy distribution in the atomistic
simulation, in which the potential energy is averaged over
atoms that belong to segments of the nanotube of the same
size as in the mesoscopic model, is shown in Fig. 3sbd. Fine
details at the atomic level that can be observed in Fig. 3sad

FIG. 5. Time dependence of the potential energy and kinetic energy of a 395 Å longs10,10d CNT in atomisticsa,bd and mesoscopicsc,dd
simulations of an acoustic wave propagation, illustrated in Fig. 3. The potential energy is shown relatively to the potential energy of a relaxed
CNT and corresponds to the strain energy due to the wave. In the atomistic simulation, the kinetic energy is calculated as a sum of kinetic
energies of the center-of-mass motion of 38,1 nm long CNT segments and does not include the energy of the high-frequency thermal
atomic motions in the center-of-mass reference frame.
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FIG. 6. sColor onlined Strain energy distributions in atomisticsa,bd and mesoscopicscd simulations of free bending vibrations of a 395
Å long s10,10d CNT with the initial radius of curvature equal to 500 Å. The value of the strain energy density is shown by the color scale:
light blue slight gray in print gray-scale versiond color corresponds to zero energy, redsdark gray in print gray-scale versiond color
corresponds to the energy density of 0.002 eV/atom. In the atomistic simulation, the distribution of the strain energy at atomic level is shown
in sad and the energy averaged over,1 nm long segments defined in the mesoscopic model is shown insbd. The nanotube is represented by
39 nodes in the mesoscopic model and by 6440 atoms in the atomistic MD model.
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are smeared out in Fig. 3sbd, making the comparison between
the atomistic and mesoscopic simulations easier. Both the
velocity of the wave and characteristic features of the strain
energy distributions in Figs. 3sbd and 3scd show good agree-
ment.

Plots of the velocities of the farsrightd ends of the nano-
tubes, given in Fig. 4, allow for a more detailed quantitative
comparison between the atomistic and mesoscopic simula-
tion results. There is a good match in the overall shape of the
plots and in the amplitudes of the velocity spikes that corre-
spond to the reflections of the wave packet from the far end
of the nanotube. The structure of the velocity spike agrees
with the notion of the bimodal wave interacting with a free
surface: the tensile component of the wave arrives first, pull-
ing the end part of the nanotube in the negative direction
snegative part of the velocity spiked; the compressive com-
ponent follows, pushing the end part of the nanotube back
spositive part of the velocity spiked.

The time evolution of the total potential and kinetic ener-
gies of the nanotube during the simulations is shown in Fig.
5. In both atomistic and mesoscopic simulations all energy is
initially stored in the potential energy of the stretched part of
the nanotube. As the acoustic wave develops, the energy par-

tition about evenly between the potential and kinetic energy
of the wave. To make a comparison to the mesoscopic simu-
lation, the kinetic energy shown in Fig. 4sbd is defined as the
kinetic energy of the collective center-of-mass motion of the
CNT segments equivalent to the ones in the mesoscopic
model. This kinetic energy does not include the energy of the
radial breathing mode as well as the thermal energy of the
high-frequency atomic motions in the center-of-mass refer-
ence frame. The spikes in the plots of the potential and ki-
netic energies correspond to the reflections of the wave from
the ends of the nanotube and the time between the spikes can
be used to estimate the speed of the wave:,18 000 m/s. In
both atomistic and mesoscopic simulations, the wave gradu-
ally dissipates upon multiple reflections, although the dissi-
pation is more pronounced in the atomistic simulation, where
a larger number of vibrational modes and anharmonicity of
interatomic interaction potential result in a faster energy dis-
sipation. Apart from the thermal energy that is not included
in the mesoscopic model, a quantitative difference in the
levels of the potentialfFigs. 5sad and 5scdg and kinetic ener-
gies fFigs. 5sbd and 5sddg is related to the difference in the
initial energy of the stretched configurationssstarting points
in the potential energy plots att=0d. The total energy of the
three segmentsstotal length of ,52 Åd stretched by 2%
in the mesoscopic simulation is 7.87 eV, whereas the
initial energy in the atomistic simulation is somewhat lower:
6.3 eV.

Overall, we can conclude that the mesoscopic model re-
produces well most of the characteristics of the acoustic
wave propagating in a CNT. A major advantage of the me-
soscopic description of the nanotube dynamics is the low
computational cost of the simulations. The atomistic simula-
tion of 10 ps trajectory of the CNT shown in Fig. 3 took 21
h on a dedicated SGI Origin 3800 workstation, whereas the
mesoscopic simulation took less than a tenth of a second on
a desktop PC.

B. Free bending vibrations

To additionally test the mesoscopic model, a simulation of
free vibrations of a bents10,10d CNT has been simulated and
compared to the results of atomistic simulations. The same
system as in the study of the acoustic wave propagation, a
395 Å long s10,10d CNT, is used in the simulations. The
CNT is initially bent with a constant radius of curvature,
Rcurv=500 Å, along the whole length of the CNT and then,
starting at a time of 0 ps, is allowed to evolve freely in the
atomistic and mesoscopic simulations.

Snapshots from the simulations of free motion of the CNT
are shown in Fig. 6. The color distribution corresponds to the
local potential energy density at various times. The strain
energy is shown with atomic-level resolution in Fig. 6sad and
is averaged over nanotube segments in Fig. 6sbd. It can be
seen that initially there is a uniform strain energy distribution
in the CNT. The relaxation of the CNT can be described as
propagation of two unloading waves that start from the end
parts of the CNT and propagate towards the center. The CNT
then undergoes free bending vibrations with characteristic
frequency of 21 GHz in the atomistic simulation and 20 GHz

FIG. 7. Velocity of an end part of a 395 Å longs10,10d CNT in
atomisticsad and mesoscopicsbd simulations of free bending vibra-
tions, illustrated in Fig. 6. In the atomistic simulation, the velocity
is averaged over atoms that belong to a,1 nm long end segment of
the CNT, in the mesoscopic simulation the velocity of an end node
is plotted.
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in the mesoscopic simulation. The discrepancy in the fre-
quency of the bending vibrations can be attributed to the
deviation from the linear regimesquadratic dependence of
the strain energy on curvature, assumed in the parametriza-
tion of the bending force constant, Sec. III Bd at high bend-
ing angles realized in the simulations shown in Fig. 6. In-
deed, the bending angles up to 0.0025 deg/Å were used in
parametrization of the MFF, much below the bending angle
of 0.1146 deg/Å that corresponds toRcurv=500 Å. This mi-
nor discrepancy can be fixed by adapting an anharmonic po-
tential fitted to the data from atomistic simulations in a wider
range of bending angles.

In order to perform a more detailed quantitative compari-
son of the dynamics of the bending vibrations predicted by
the atomistic and mesoscopic models, velocities of the end
parts of the CNTs are plotted in Fig. 7. Apart from a slightly
higher vibrational frequency in the mesoscopic simulation,
the agreement between the two simulations is remarkable.
The velocity plots show a very good match not only in the
overall shapes but also in the detailed vibrational structure of
the trajectories.

The time dependence of the kinetic and potential energies
during the simulations is shown in Fig. 8. Initially, all
the energy is stored in the potential energy of the bent
configurations. The initial potential energy in the mesoscopic
simulationfFig. 8sadg is 14.6 eV, somewhat lower than 15 eV
predicted by the first part of Eq.s5d. The discrepancy is
related to zero bending energy associated with the end nodes
in the mesoscopic model. An increase in the number of nodes
representing the nanotube brings the initial bending energy

closer to 15 eV. A lower value of the initial energy in the
atomistic configuration is related to the deviation
from the linear regime at high bending angles discussed
above. During the simulations, the energy is partitioned be-
tween the potential and kinetic energies. In the mesoscopic
simulation a small part of the energy is leaking into the
stretching energy through the inertial couplingsthe term of
the MFF responsible for the explicit coupling between
stretching and bending is not activated in this simulationd.
The stretching contribution to the potential energy does
not exceed 1% of the total potential energy during the
simulation. Similar to Fig. 5sbd, the kinetic energy shown in
Fig. 8sbd is defined as kinetic energy of the collective center-
of-mass motion of the CNT segments equivalent to the
segments in the mesoscopic model. The energy of the atomic
motions in the center-of-mass reference frame, excluded
in this definition, increases during the first several picosec-
onds of the simulation to,0.15 eV s,1.1% of the
total energyd and then slowly increases up to,0.2 eV
s2.3% of the total energyd during the time of the simulation,
100 ps.

Similar to the stretching simulations, we can conclude
that the bending vibrations of an individual nanotube can
be well represented by the mesoscopic model for a tiny frac-
tion of the computational cost. The 100 ps atomistic sim-
ulation of bending vibration took more than a week of cal-
culations on a dedicated SGI Origin 3800 workstation,
whereas the corresponding mesoscopic simulation took less
than 1 second on a desktop PC.

FIG. 8. Time dependence of the potential energy and kinetic energy of a 395 Å longs10,10d CNT in atomisticsa,bd and mesoscopicsc,dd
simulations of free bending vibrations, illustrated in Fig. 6. The potential energy is shown relatively to the potential energy of a relaxed CNT
and corresponds to the strain energy due to the bending vibrations. In the atomistic simulation, the kinetic energy is calculated as a sum of
kinetic energies of the center-of-mass motion of thirty-eight,1 nm long CNT segments and does not include the energy of the high-
frequency thermal atomic motions in the center-of-mass reference frame.
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V. DISCUSSION AND SUMMARY

The principal challenge in the computational modeling of
nanostructures and nanocomposites based on carbon nano-
tubes is presented by the gap between the atomistic descrip-
tion of individual nanotubes and the collective behavior and
properties of large groups of CNTs in nanocomposite mate-
rials or nanostructures. While atomistic simulations can pro-
vide detailed information on the behavior of individual
CNTs, the calculations are computationally expensive and
difficult to extend to systems containing multiple CNTs. In
this paper we present a coarse-grained force-field model for
CNTs that provides a computationally efficient description of
CNTs and can help to close the gap between the atomistic
and continuum descriptions of CNT-based materials and
structures. The coarse-grainedsor mesoscopicd model incor-
porates the essential information from the atomic-level simu-
lations and represents the dynamic behavior of a CNT with a
drastically reduced number of degrees of freedom. Specifi-
cally, a CNT is represented as a “breathing flexible cylinder”
consisting of a variable number of segments. The surface of
the nanotube is not represented explicitly in the model but is
calculated from a limited set of dynamic variables only when
needed to define a particular external interaction. This repre-
sentation drastically reduces the number of the independent
degrees of freedom and makes the model much more effi-
cient as compared to conventional representations based on
continuum mechanics concepts.

First test simulations performed for the acoustic wave
propagation and free bending vibrations of the nanotube
demonstrate that the mesoscopic model reproduces well the
short-term dynamic behavior of individual CNTs as pre-
dicted in atomistic simulations. If required for a particular
application, a quantitative agreement between the results of
mesoscopic and atomistic simulations can be further im-
proved by fine tuning the parameters of the MFF and inclu-
sion of additional terms responsible for coupling between
different dynamic degrees of freedom in the model. More-
over, the high-frequency vibrational modes that are not in-

cluded in the mesoscopic model explicitly can be accounted
for by connecting the long-wavelength internal elastic modes
with a “heat bath” that represents the remaining degrees of
freedom of the CNT. Although the initial parametrization and
testing of the mesoscopic model discussed in this paper has
been performed for single-walled CNTs, the MFF given by
Eq. s1d can be easily applied to multiwalled CNTs, which are
often used in polymer-matrix nanocomposites. Similarly to
single-walled CNTs, parametrization of the model for multi-
walled CNTs can be performed based on the results of ato-
mistic simulations or experimental data on the behavior and
properties of multiwalled CNTs.

The main advantage of the mesoscopic model is its high
computational efficiency. Simulation of the dynamics of a
395 Å long s10,10d CNT for several periods of bending vi-
brations took less than a second on a desktop PC, suggesting
that mesoscopic simulations of much larger systems contain-
ing multiple CNTs and other constituents represented at a
mesoscale levelse.g., coarse-grained representation of mo-
lecular systems23–26d is possible. The length scale of a dy-
namic simulation is defined by the size of the dynamic ele-
ments for which the equations of motion are solved. The
dynamic elements in the model are significantly larger than
the atoms and the size of the computational cell can also be
much larger than the one used in atomistic simulations. The
time scale of the simulations is defined by the time step in
the numerical integration. Since explicit atomic vibrations
are not followed in the model, the time step of integration
can be increased by up to several orders of magnitude. Pa-
rametrization of the external interactions for CNTs embed-
ded in a polymer matrix and simulation of the CNT-based
polymer nanocomposite systems, such as the one shown
schematically in Fig. 1sbd, is the subject of our current work.
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