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ABSTRACT 

A mesoscopic computational model is developed for 
simulation of the collective behavior of carbon nanotubes 
(CNTs) in CNT-based materials. The model adopts a coarse-
grained representation of a CNT as a sequence of stretchable 
cylindrical segments defined by a chain of nodes. The dynamic 
behavior of CNTs is governed by the equations of motion for 
the nodes, enabling computationally efficient “molecular 
dynamics-type” simulations. The internal part of the 
mesoscopic force field takes into account stretching and 
bending of individual CNTs. A novel computationally-efficient 
“tubular” potential method is developed for the description of 
van der Waals interactions among the nanotubes. The 
parameterization of the “tubular” potential is based on an inter-
atomic potential for non-bonded interactions between carbon 
atoms. The application of the mesoscopic model to simulation 
of systems consisting of hundreds of CNTs demonstrates 
perfect energy conservation for times as long as tens of 
nanoseconds. Self-assembly of CNTs into bundles with 
hexagonal ordering of nanotubes is observed in simulations 
performed for systems with initial random orientation of CNTs. 

 

1. INTRODUCTION 

Composite materials based on polymer matrixes reinforced 
by CNTs is the promising class of materials for electronic, 
aerospace and other applications [1,2,3]. In these materials, the 

unique mechanical, thermal and electronic properties of CNTs 
are combined with the light weight of polymers. The effective 
properties of CNT-based nanocomposites depend not only on 
composition and properties of individual components, but are 
also strongly affected by the distribution of CNTs in the matrix 
and the characteristics of the CNT-matrix and CNT-CNT 
interactions. Theoretical or computational prediction of the 
effective macroscopic properties of CNT-based nanocomposite 
materials is a complex problem that has not been resolved yet.  
Even for systems consisting of CNTs only, such as nanotube 
mats (bucky paper) [4,5,6], films [7,8,9] and fibers [9], the 
irregular hierarchical nano/micro-structure of the materials 
complicates the analysis. In particular, the microscopic 
structure of bucky paper can be described as a random network 
of interconnected CNT bundles or ropes [4,5,6], with the rope 
length as large as hundreds of micrometers [4] and the typical 
size of pores in this network on the order of hundreds of 
nanometers [10,11]. Hence, a model suitable for investigation 
of the properties of CNT-based materials has to include an 
adequate description of the processes occurring on a broad 
range of length scales, from the dynamics and interactions of 
individual CNTs to the collective behavior of a network of 
CNT bundles with characteristic size on the order of 
micrometers. 

Computationally, properties of individual CNTs have been 
extensively investigated in atomic-level molecular dynamics 
simulations, e.g. [1,2,3]. The atomistic modeling, however, is 
computationally expensive and cannot be used to study 
dynamic evolution of large ensembles of CNTs at long time 
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scales. The descriptions based on continuum mechanics [12], 
e.g. elastic shell or beam models implemented within the 
framework of the finite element method [13,14,15], are 
somewhat more efficient than the atomistic models but still not 
applicable for large-scale dynamic simulations of CNT-based 
materials.  The applications of the elastic shell models have 
been largely limited to the analysis of the deformation behavior 
of individual single- and multi-wall CNTs. 

Computationally-efficient approach based on the “bead-
and-spring” model, commonly used in polymer modeling [16], 
has been proposed in Ref. [17]. The description of the inter-
tube interaction by a spherically-symmetric potential exerted by 
‘beads’ on each other, however, coarsens significantly the real 
nature of inter-tube interactions and can introduce artifacts in 
the behavior of the model. From the physical point of view, the 
interaction between the tubes is closer to the interaction 
between cylindrical segments rather than beads. A mesoscopic 
representation of CNTs as “breathing flexible cylinders” was 
introduced in Ref. [18], but the description of the interaction 
between the tubes was not provided. 

In this paper, we extend the mesoscopic representation of 
CNTs, developed in [18], by adding a description of non-
bonding interactions among the nanotubes. A novel 
computationally-efficient “tubular” potential, explicitly 
accounting for the cylindrical shape of the interacting CNTs, is 
developed and implemented in the computational model. The 
parameterization of the potential is based on an inter-atomic 
potential used for representation of non-bonding van der Waals 
interactions between carbon atoms in atomistic simulations. 
The performance of the model is tested in simulations of self-
assembling and bundle formation in a system consisting of 
hundreds of CNTs. 

2. DESCRETE MESOSCOPIC MODEL OF CARBON 
NANOTUBES 

A carbon nanotube can be considered as a graphene sheet 
rolled into a tube in a way ensuring the preservation of 
periodicity of the hexagonal lattice and capped at the ends by 
semi-spherical “caps.” The structure and properties of a 
nanotube with perfect atomic arrangement in the non-deformed 
state is completely defined by a pair of integers ( nm, ) [19], 
which is often called a CNT type. All the structural parameters 
of a CNT can be calculated from its type ( nm, ), e.g., the radius 
of CNT is  

)2/()(3 22 π++= nmmnlR cT , (1) 

where lc is the carbon-carbon inter-atomic distance in a 
graphene sheet [19], listed in Table 1. 

The typical length, L , of a CNT in a CNT-based material 
range from a hundred of nanometers to tens of microns [5,20]. 
The typical diameter, D , of tubes obtained, e.g., by HIPCO 
process or by laser ablation, is on the order of 1 nm [4,6,11]. 

This means that every tube consists of about /DL × lc
2 ~ 

105÷107 carbon atoms. This number of atoms is too large for 
direct atomic-level molecular dynamics simulations of systems 
consisting of hundreds and thousands of CNTs. 

An alternative approach, adapted in this work, is to 
represent CNTs at a mesoscopic level, by chains of straight 
cylindrical segments [18]. The length of each segment is 
chosen to be significantly smaller than the local radius of 
curvature of the CNT. The interactions among the segment are 
described by a mesoscopic force field parameterized based on 
the results of atomistic simulations and/or experimental data. 
The internal part of the force field including a description of 
the stretching, bending and torsional deformations of individual 
CNTs has been given in Ref. [18]. 

The goal of this paper is to develop a computationally-
efficient approach for representation of non-bonding 
interactions among CNTs. To simplify the initial development 
and testing of the new “tubular” potential, the model presented 
in this work includes only the basic features necessary for 
performing dynamic simulations of a system of interacting 
CNTs. In particular, the internal part of the force field is 
represented by the stretching and bending terms only, with 
radial and torsional degrees of freedom excluded from the 
model. The initial parameterization of the force field is 
performed for single-walled CNTs and the effect of the changes 
in the shapes of local cross-sections of CNTs during the 
deformation on the strength of non-bonding interactions is 
neglected. 

The general framework of the model, however, is 
sufficiently flexible to allow for a relatively straightforward 
extension to modeling of CNTs of different radii, dynamic 
variation of radii and torsional deformation, description of 
nanotube buckling and fracture, as well as incorporation of 
dissipative forces and an approximate representation of the 
internal energy associated with high-frequency atomic 
vibrations.  These features of the model will be added in the 
future work as needed for the description of particular aspects 
of the behavior of CNT-based materials. 

Within the assumptions outlined above, the system of 
interacting CNTs is described in terms of translational motion 
of nodes located along the axes of the CNTs.  The nodes divide 
CNTs into segments, with each segment defined as a straight 
section of a CNT between two adjacent nodes.  

In a system of N CNTs, each nanotube i ( Ni ,...,1= ) is 
represented by Ni nodes (including two end nodes). The state of 
the nanotube i can be characterized by the set of position 
vectors ri,j of its nodes, Ri=(ri,1,…,ri,Ni), so that the pair 
(ri,j,ri,j+1) defines the position and orientation of segment j of 
the nanotube i. The dynamics of the system can be described by 
the equations of motion of classical mechanics in the 
Lagrangian form [21] 
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dt
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where ),,,,( 1 Ni RRRR KK= , dtd /RR =& , )()( RR UEL −= &  
is the Lagrangian of the system, E  and U  are the kinetic and 
potential energies of the system. In the simplified model 
considered in this work (see above), the only motion is the 
translational motion of nanotube nodes and the kinetic energy 
of the system is 

( )∑∑
= =

=
N

i

iN

j
ji

jim
E

1 1

2
,

,

2
)( rR && , (3) 

where mi,j is the part of the mass of nanotube i associated with 
its node j.  The total potential energy of the system is 

)()()()( IntBndStr RRRR UUUU ++= , (4) 

where the potential energy of nanotube stretching, UStr(R), 
bending, UBnd(R), and inter-tube interaction, UInt(R), can be 
expressed in the following form: 

∑∑
=

−

=
+=

N

i

iN

j
jijiuU

1

1

1
1,,StrStr ),()( rrR , (5) 

∑∑
=

−

=
+−=

N

i

iN

j
jijijiuU

1

1

2
1,,1,BndBnd ),,()( rrrR , (6) 

∑∑
= =

=
N

i

N

ij
jiTTUU

1
Int ),()( RRR . (7) 

Here, uStr (ri,j,  ri,j+1) is the potential energy of stretching of the 
segment (ri,j, ri,j+1), uBnd (ri,j-1, ri,j, ri,j+1) is the potential energy of 
the nanotube bending at the node ri,j, and UTT (Ri, Rj) is the 
potential energy of the interaction between tubes i and j. 
Harmonic potentials parameterized in Ref. [18] based on the 
results of atomistic simulations are used for the stretching and 
bending terms of the potential energy, Eqs. (5) and (6). 

The development and testing of the potential for 
calculation of inter-tube interaction energy, Eq. (7), is the main 
subject of this paper. The “tubular” potential method, designed 
for evaluation of the CNT-CNT interaction term UInt(R), 
includes two steps. First, a computationally-efficient “tubular” 
potential describing interaction between a cylindrical segment 
and an infinitely-long or semi-infinite straight tube is 
introduced and described in section 3. Next, using a specially-
designed weighed approach, the tubular potential is applied for 
calculation of interaction between curved tubes. The idea of the 
weighted approach, substituting the chains of segments 
participating in the interaction by “effective” straight 
nanotubes, is described in Section 4.  Finally, the new method 
is tested by performing several simulations of the dynamic 
structural rearrangements occurring in systems containing 
hundreds of interacting nanotubes. The analysis of the process 
of self-organization of CNTs into a random network of close-
packed bundles and the corresponding evolution of energy in 
the system are presented in Section 5. 

3. TUBULAR POTENTIAL 

3.1. Non-bonding Interaction between Carbon Atoms 

Following atomic-level computational models, the van der 
Waals interaction between two CNTs can be described through 
a sum of pair-wise interactions between all the pairs of carbon 
atoms that belong to the two CNTs. The non-bonding 
interaction between two carbon atoms is typically represented 
by Lennard-Jones interatomic potential [22,23]: 
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where r  is the distance between the two atoms under 
consideration. In order to make our model comparable with a 
popular AIREBO potential, commonly used in atomistic 
modeling of CNTs and carbon nanostructures, we adopt the 
functional form and parameters of the potential from Ref. [22]. 
In particular, the Lennard-Jones potential is modified by a 
cutoff function S(τ) that changes from 1 to 0 when r  is varied 
from rc0 to rc and ensures a smooth transition of the potential to 
zero at the potential cutoff distance, rc [24]. The interatomic 
potential is then defined as 
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)]23(1)[1()()()( 2 τ−τ−τ−ΘτΘ+τ−Θ=τS , (10) 

where Θ(τ) is the Heaviside step function. The values of ε , σ , 
rc, and rc0 used in the calculations are listed in Table 1, with σ  
chosen to reproduce the interlayer separation in graphite and ε  
fitted to the elastic constant c33 of graphite. 

 

Parameter 
cm , Da cl , Å ε , eV σ , Å cr  0cr  

Value 12.0107 1.421 0.00284 3.4 3σ 2.16σ 

Reference  [19] [22] [22] [24] [24] 

Table 1. Parameters used as physical input in the design of the 
mesoscopic “tubular” potential for CNT-CNT interactions: Mass of a 
carbon atom mc, interatomic distance in a graphene sheet lc, 
parameters of Lennard-Jones potential given by Eq. (8), and 
parameters of the cutoff function in Eq. (9). 
 

3.2. Continuum Tubular Potential for Interaction 
between a Segment and a Straight Tube 

CNT-CNT interaction terms in the right part of Eq. (7) can 
be reduced to the interactions between pairs of segments: 
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where USS is the potential energy of interaction between two 
corresponding segments. In the case of i=j, the self-interaction 
and interaction between neighbor segments is excluded from 
the summation in Eq. (11). Theoretically, USS can be found as a 
sum of pair potentials, Eq. (9), for all pairs of atoms that belong 
to the two different segments. In mesoscopic simulations, the 
number of segments can be as large as millions and every 
segment consists of many (usually, hundreds or thousands) 
atoms. Therefore, a direct calculation of the segment-segment 
potentials USS through the summation over atomic pairs is 
impractical due to obvious limitations of available computer 
resources. 

A more efficient method for calculation of USS can be 
based on a continuum approach, where the summation over 
interatomic interactions is substituted by the integration over 
surfaces of the interacting segments. Similar approach was used 
in Ref. [23] for calculation of the effective potentials describing 
non-bonding interactions between graphene sheets, fullerene 
molecules, a fullerene and a straight infinitely-long carbon 
nanotube, and, in Refs. [23,25], between parallel infinitely-long 
carbon nanotubes of the same radius. Recently, similar 
approach was applied for the description of interaction between 
parallel infinitely-long carbon nanotubes of different radii [26] 
and used in the derivation of the cohesive law at the 
CNT/polymer interface [27]. 

In the continuum approach, the real atomic configurations 
at surfaces of nanotubes are replaced by the continuous 
distribution of atoms with surface density nσ=23/2/(3lc

2), so that 
the segment-segment potential can be found by integrating the 
interatomic potential given by Eq. (9) over the surfaces of 
interacting segments: 
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Here, the six geometric parameters h, α, ξ1, ξ2, η1, and η2, 
define the relative position of two segments with respect to 
each other. In particular, h and α are the shortest distance and 
the angle between the axes of the segments, ξ1, ξ2 and η1, η2 are 
the coordinates of ends of the first and second segments along 
their axes with respect to points O and O' on the segment axes 
defining the shortest distance between the axes (see Fig. 1). 
These geometrical parameters can be found as functions of 
position vectors of the nodes defining the two segments: 

( )2121 ,,, pprrhh = , ( )2121 ,,, pprrα=α , ( )212111 ,,, pprrξ=ξ , 
( )212122 ,,, pprrξ=ξ . Integration in Eq. (12) is performed along 

the axes of the segments, ξ and η, and over the angles φ1 and φ2 
specifying positions of points in cross-sections of the segments. 

Eq. (12) can be used to define the potential for interaction 
between a segment and an infinitely-long tube by setting the 
limits of integration, η1 and η2 to infinity: 
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Figure 1. Geometric parameters, characterizing the relative position of 
two cylindrical CNT segments. The axis x is directed along the 
shortest distance between the axes of the segments.  
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This potential, UT∞, defining the interaction between an 
infinitely long tube and an arbitrary positioned and oriented 
segment we will call the “tubular” potential. It should be noted, 
that the continuum approach was applied in Refs. [23,25,26,27] 
to configurations that are much simpler as compared to the one 
considered in this work. For example, the continuum potential 
describing the interaction between a fullerene molecule and an 
infinitely-long CNT [23] depends on one geometric parameter 
only. The simplification of the four-dimensional integral in Eq. 
(13) can be done only for special cases, such as the case of 
infinitely-long parallel tubes and Lennard-Jones potential 
without a cutoff [25,26]. In the general case of an arbitrary 
relative orientation of the tubes, the potential given by Eq. (13) 
can only be evaluated by numerical integration. This makes 
calculation of UT∞ “on the fly,” in the course of a dynamic 
simulation, impractical. Tabulation of the function of four 
independent variables with sufficient accuracy is also 
impossible due to limitations of computer memory. Thus, the 
design of a computationally-efficient inter-tube potential has to 
rely on an approximate representation of UT∞, which can be 
expressed through one- or two-dimensional functions only. 
Such functions could be evaluated and tabulated in advance 
and used as needed in the course of a dynamics simulation. The 
design of an approximation of the four-dimensional integral 
defining the “tubular” potential UT∞ is presented in the next 
sub-section. 
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3.3. Approximate Potential Density and Tubular 
Potential 

The tubular potential UT∞ can be expressed in terms of the 
distribution of the potential density u∞(h,α,ξ) along the segment 
axis: 

∫
ξ

ξ
∞∞ ξξα=ξξα

2

1

21 ),,(),,,( dhuhUT . (14) 

If the segment and the tube are parallel to each other 
( 0=α ), then the potential density for parallel tubes u∞||(h) 
does not depend on ξ and UT∞(h,ξ1,ξ2)=(ξ2-–ξ1)u∞||(h). In this 
particular case, function u∞||(h) can be easily calculated for an 
arbitrary inter-atomic potential ψ(r) and recorded in a one-
dimensional table with high accuracy. The next step is to find 
an approximate representation of the potential density for an 
arbitrary relative orientation of the segment and the tube that 
can be expressed through one- and two-dimensional functions. 
The basic idea exploited here is to express the approximate 
potential density through the potential density for parallel tubes 
u∞||(h). 

Let us consider an infinitesimally thin slice of the segment 
with coordinate ξ on the axis Oz. The thickness of the slice is 
dξ and the surface area is dS=2πRT dξ. The potential dU of the 
interaction between the surface of the slice and the infinitely-
long tube is equal to dU=u∞(h,α,ξ)dξ. If we rotate the slice 
around its center so that the axis of the slice becomes parallel to 
the axes of the tube, then the new slice-tube potential 

ξξα= ∞ dhuUd ),,(  can be approximately expressed through the 
potential density for parallel tubes, u∞||: 
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where ( )22 sinαξ+h  is the distance from the center of the 
slice to the axis of the tube. The comparison of the true 
u∞(h,α,ξ) and approximate ),,( ξα∞ hu  potential densities 
indicates that the approximation of the true potential density 
u∞(h,α,ξ) by Eq. (15) is only valid for small angles, α ≤ 10º. For 
larger angles, however, the approximation can be improved by 
the introduction of two fitting functions, Γ(h,α) and Ω(α), and 
defining the approximate potential density as follows 
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The precision of the approximation (16) depends on the 
choice of fitting functions, both of which have values on the 
order of unity. It was found that for CNTs with radius from 3.4 
to 15 Å, the fitting functions can be chosen as follows: 
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where CΩ, αΩ and αΓ  are constants and the function 
Γ⊥(h)=u∞(h,π/2,0)/u∞||(h) is expressed through the true potential 
density u∞(h,α,ξ) evaluated for the particular case when the 
tube and the segment are perpendicular to each other (α=π/2) at 
point ξ=0. It was found that the best choice of CΩ depends 
slightly on the CNTs radius (e.g., CΩ=0.23 for CNTs of type 
(10,10) and CΩ=0.25 for CNTs of type (20,20)), while values 
αΩ = π/4 and αΓ = (2/9)π are appropriate for any CNT from the 
range of RT considered, from 3.4 to 15 Å. 

The derivation of Eq. (16) is the key result of this paper. 
With the help of two tabulated one-dimensional functions, 
u∞||(h) and Γ⊥(h), this equation allows for a straightforward and 
computationally efficient calculation of the potential density for 
an arbitrary relative orientation of a tube and a segment. 

Using the approximation given by Eq. (16) in the integral 
in Eq. (14), the approximate tubular potential can be obtained 
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Introducing a new two-dimensional function ),( ζΦ h  
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one can rewrite Eq. (21) as follows 
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where the right part contains two- and one-dimensional 
functions only. Equations (19), (20) and (23) can be used for 

π<α<0 , with the values of the approximate tubular potential 
for other angles calculated based on obvious symmetry 
considerations. The function ζmin(h) is introduced in the right 
part of Eq. (22) in order to exclude singularities in sub-integral 
function physically corresponding to the intersection between 
nanotube surfaces. If h>2RT , this function is equal to zero. 

The true tubular potential given by Eq. (13) is compared 
with the approximate one of Eq. (23) in Fig. 2. One can see that 
the choice of the fitting functions in the form of Eqs. (17)–(20) 
ensures an excellent agreement between the approximate and 
true potentials. 

The approximate potential density for the interaction 
between a segment and a semi-infinite tube can be introduced 
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in the form similar to the approximate potential density ∞u~  in 
Eq. (16). Such a potential density can also be expressed 
through one- and two-dimensional functions. The potential 
describing the interaction between a segment and a semi-
infinite tube, however, can not be represented in the form 
similar to Eq. (23). Therefore, this tubular potential is 
calculated by the numerical integration of the appropriate 
potential density along the segment axis. Details of the 
calculation of the tubular potential for a semi-infinite tube will 
be reported elsewhere [28]. 
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Figure. 2. True, Eq. (13), (solid red curves), and approximate, Eq. 
(23), (dashed blue curves) tubular potentials versus angle α at h-2RT = 
rc / 4 (a) and h–2RT = rc / 3 (b). In all calculations ξ1 = –10 Å and ξ2 = 
10 Å. Curves 1–3 are shown for (5,5), (10,10), and (20,20) CNTs, 
respectively. 

For a given radius of CNTs, RT, the developed tubular 
potential, Eq. (23), is completely defined by the interatomic 
potential, ψ(r). In particular, for the cutoff Lennard-Jones 
potential, Eq. (9), the constants CΩ, α Ω, and αΓ, as well as the 
functions u∞||(h) and Γ⊥(h), are defined by the parameters listed 
in Table 1 and the tube radius RT. Similarly, the approach for 
constructing an approximate tubular potential described above 
can be used for an arbitrary law of interaction between the 
surface elements representing atoms or molecules that build up 
the tubular structures. Hence, we believe that, beyond CNTs, 
the developed potential can be used for the description of the 

interaction between various “tubular” nano- and micro objects, 
such as boron nitride nanotubes, nano- and micro-rods, and 
bioorganic fibers. 

4. WEIGHTED APPROACH FOR CALCULATION OF 
INTERACTION BETWEEN CURVED NANOTUBES 

A special approach should be introduced in order to adopt 
the tubular potential describing the interaction between a 
segment and a straight nanotube, Eq. (23), for calculation of 
inter-tube interaction terms UTT in Eq. (7) for curved CNTs. In 
this section, the idea of this approach is demonstrated for a pair 
of CNTs, where the effects associated with ends of the CNTs 
are not considered. The general case, when the interactions 
between the ends of CNTs are included, can be implemented in 
a similar way and is described elsewhere [28]. 

4.1. Chains of Interacting Segments  

The segment-segment potential USS in Eqs. (11) and (12) 
has a finite range of interaction, i.e. USS = 0 if the shortest 
distance rmin between points at the surfaces of the segments is 
larger than the cutoff distance of the interatomic potential, rc. 
The summation in Eq. (11), therefore, should include only pairs 
of segments for which rmin < rc. These pairs of segments can be 
arranged in a “neighbor list,” the approach commonly used to 
speed up MD simulations [29]. The algorithm for calculation of 
the shortest distance between the surfaces of two cylindrical 
bodies, however, is not simple. Instead, one can use a fast 
approximate approach for building a list of pairs of interacting 
segments. In this approach the distance between centers of two 
segments  

22
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is compared with the maximum distance above which the two 
segments can not interact regardless of their orientation with 
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where Li,k and Lj,l are the lengths of the corresponding 
segments. Hence, a pair of segments is added to the list of 
potential neighbors only if the condition  

),,,(),,,( 1,,1,,1,,1,, ++++ ρ≤ρ ljljkikicljljkiki rrrrrrrr           (26) 

is satisfied.  
One can re-write Eq. (11) in the form 
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where UST (ri,k, ri,k+1, Rj) is the potential of interaction between 
segment (ri,k,ri,k+1) and the whole tube Rj.  As soon as all pairs 
of possibly interacting segments are found, one can identify 
continuous chains of segments within the tube Rj that interact 
with segment (ri,k,ri,k+1). Correspondingly, the segment-tube 
potential UST (ri,k,ri,k+1,Rj) can be represented in the form 

    ∑ ++ =
m

mmNmkikiSCjkikiST UU ),...,,,(),,( ,,11,,1,, qqrrRrr ,    (28) 

where USC (ri,k,  ri,k+1,q1,m,…,qNm,m) is the potential of interaction 
between a segment (ri,k,ri,k+1) in CNT Ri and a chain of 
segments (q1,m,…,qNm,m) in CNT Rj. The summation over m 
accounts for CNT configurations in which more than one 
separate chain of segments in CNT Rj interacts with segment 
(ri,k,ri,k+1).  Such configurations may appear, for example, when 
CNT Rj forms a loop enclosing segment (ri,k,ri,k+1). 
 
4.2. Approximate Weighted Segment-Chain Potential 

The maximum length of chains interacting with any 
segment in Eq. (28) is defined by the length of the CNT 
segments and the cutoff distance for interatomic interaction.  
The high stiffness of CNTs ensures that, for appropriate choice 
of the model parameters, the length of the chains is small 
compared to a typical radius of curvature of nanotubes. Thus, 
one can neglect the curvature of the chains and calculate every 
term in the sum in the right part of Eq. (28), assuming that the 
corresponding chain is a part of a straight tube.  

To simplify the notation, let us consider an interaction of a 
segment (r1, r2) with a chain of segments (q1,…,qN) in one on 
the neighboring CNTs. If the chain does not include the tube 
ends, then the segment-chain interaction can be calculated with 
the help of the tubular potential given by Eq. (23), i.e.,  

),,,,(),,,,(~),,,,( 21212121121 ( pprrpprrqqrr α= ∞ hUU TNSC K  

)),,,(),,,,( 2121221211 pprrpprr ξξ .    (29) 

Here, p1 and p2 are position vectors of two points defining an 
‘effective’ straight tube representing the chain of segments 
(q1,…,qN).  In order to ensure the conservation of energy in a 
dynamic simulation, functions pk(r1,r2,q1,…,qN) should be 
continuous and should have continuous derivatives even at a 
time when the list of segments in the chain is changing due to 
the relative motion of CNTs. A possible way to satisfy this 
condition is to define pk as a weighted average of the positions 
of nodes in the chain: 
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where wj+1/2=w(r1,r2,q j,q j+1) is a smooth weight function for the 
pair of segments (r1,r2) and (qj,qj+1).  The weight function 
serves as a measure of relative proximity of these two segments 
and should approach zero as the distance between the segments 
reaches the limit of their interaction given by Eq. (25). For 
example, the weight function can be defined as 
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where S(τ) is the universal switching function defined by Eq. 
(10) and ρmin is a constant parameter equal to the distance 
between centers of segments below which the weight function 
is assumed to be equal to unity. 

Hence, the developed approach for calculation of the inter-
tube interaction term in Eq. (7) includes the following four 
basic steps: 
1. Calculation of pairs of neighbor segments with the help of 

the condition given by Eq. (26). 
2. For every segment, its neighbor segments are grouped into 

chains, constituting continuous sequences of segments 
belonging to the same nanotube. 

3. For every segment-chain pair, the position vectors (p1, p2) 
defining an “effective” straight nanotube are calculated 
with Eq. (30), and the interaction potential USC is 
calculated using the tubular potential according to Eq. 
(29). 

4. Finally, the total inter-tube interaction energy of all 
segments is calculated by summing the contributions of all 
segment-chain pair according to Eqs. (27)–(28). 

5. COMPUTATIONAL RESULTS AND DISCUSSION 

To test the computational efficiency and numerical stability 
of the developed mesoscopic model, we perform a series of 
simulations for a number of systems containing hundreds of 
interacting CNTs. Analysis the total energy conservation during 
the long-term evolution of the system is used to verify the 
correct implementation of the model, whereas the extent of the 
structural changes observed in the simulations is serving as an 
illustration of the capabilities of the model to study the 
mesoscopic structural rearrangements in the system. 

All simulations are performed for samples composed of 
(10,10) nanotubes (RT = 6.785 Å).  The interactions among 
CNTs are described by the tubular potential parameterized for 
interatomic potential given by Eq. (9). The initial tests 
simulations are performed for a relatively small sample 
containing 537 CNTs (Figs. 3, 5-7).  Each CNT has a length of 
180 Å and is represented by 9 segments. The initial sample has 
dimensions of 600×600×600 Å3, with periodic boundary 
conditions applied in all directions. The density of the sample is 
≈0.145 g/cm3.  

The initial configuration of CNTs is generated with an 
algorithm in which the nanotubes are grown from random 
points inside the computational cell in a “segment-by-segment” 
manner. Positions of new segments attached to the ones already 
present in the sample are chosen with the help of a stochastic 
“trial-and-error” method aimed at minimizing the total energy 
of the sample. This method produces three-dimensional 
structure of randomly oriented slightly curved nanotubes (Fig. 
3a) with relatively small inter-tube interaction energy. 
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The nanotube segments in Figs. 3 and 6 are colored 
according to the values of local inter-tube interaction energy, 
with yellow color corresponding to zero interaction energy. In 
the initial state, Fig. 3a, the interaction among CNTs is 
localized in a relatively small number of local regions colored 
red and green, with red segments having positive energy values 
corresponding to strong repulsion between CNTs. Thus, the 
initial structure of the computational samples consists of 
individual CNTs, which are not assembled into bundles.  

Although the velocities of all nodes in the initial state are 
set to zero, the small initial inter-tube interaction is sufficient to 
trigger the evolution of the CNT configuration in a simulation 
illustrated by snapshots shown in Fig. 3.  The snapshots from 
the simulation clearly show a spontaneous rearrangement of the 
initial random network of CNTs into well-defined bundles. 
Dark blue color of CNT segments in Fig. 3b,c corresponds to 
low values of inter-tube interaction energy characteristic of 
parallel tubes located close to the equilibrium distance from 
each other.  

In the simulation illustrated in Fig. 3, the bundles of CNTs 
are formed on the time scale of hundreds of picoseconds, with 
almost all tubes grouped into bundles by 500 ps. Further 
evolution of the structure proceeds in the direction of gradual 
growth of the bundles. The final structure of the sample 
consists of several large bundles that have almost no interaction 
with each other. Obviously, this final structure is defined by the 
short length of the CNTs used in the simulation.  Simulations of 
larger samples with more realistic length of CNTs (e.g. Fig. 4) 
predict the formation of a random network of CNT bundles 
with entangled CNT structures and complex inter-connections 
among the bundles.  Qualitatively, the network of bundles in 
Fig. 4 is similar to experimental pictures of the surface of 
bucky paper or CNT films [4,5,6,7,8,9]. Quantitative 
comparison between the simulation results and experimental 
data, however, is hampered by the lack of reliable structural 
characteristics capable of providing quantitative description of 
CNT networks. Despite the recent efforts and some progress in 
the direction of designing methods for structural 
characterization of CNT structures [10,11,30], this important 
problem has not been resolved yet. 

Theoretically, a perfect crystalline bundle of CNTs should 
exhibit hexagonal packing of nanotubes. The hexagonal 
arrangement of CNTs in the bundles has also been confirmed 
by experimental observations [4,6]. In simulations, the packing 
of nanotubes in bundles just after their formation is rather 
irregular. The long-term rearrangements of CNTs in the 
bundles, however, result in a gradual increase of the ordering of 
nanotubes, with local hexagonal arrangements appearing in the 
cross-sections of the bundles, e.g. Fig. 5. The number of 
nanotubes involved in the hexagonal structures increases with 
time, but the rate of the structural relaxation varies widely 
depending on the relaxation conditions (e.g., constant-energy 
vs. constant-temperature simulations, etc.). Even in the 
simulation performed with unrealistically short tubes, Fig. 3, 
the process of the relaxation inside the bundles and the 

 

 

 
Figure 3.  Snapshots from a simulation performed for a system of 537 
(10,10) CNTs with the length of each CNT equal to 180 Å. The 
dimensions of the system are 600×600×600 Å3 and the density is 
0.145 g/cm3.  The snapshots are taken at times of 0 ns (a), 1 ns (b), and 
4 ns (c) of the simulation.   The CNTs are colored according to the 
local inter-tube interaction energy, with red corresponding to high and 
blue corresponding to low interaction energy. 

(a) 

(c) 

(b) 
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formation of hexagonal packing of CNTs takes long time and is 
not finished within 10 ns of the simulation. Hence, the process 
of bundle formation includes two basic stages: 1) relatively fast 
arrangement of individual CNTs into bundles with irregular 
structures, and 2) much slower re-arrangement of CNTs within 
the bundles resulting in a more ordered internal structure of the 
bundles. 

 

 

 
Figure. 5. Enlarged view of a cross-section of a typical bundle from 
Fig. 3c.  Representation of some of the CNTs is altered to highlight the 
development of the hexagonal packing of CNTs in the bundle.   

The applicability of the developed mesoscopic model for 
extreme conditions of high energy/material density is tested by 
applying high hydrostatic pressure to the sample shown in Fig. 
3a.  The pressure is applied using the Berendsen barostat, 
commonly used in MD simulations [29]. The barostat is 
modified for CNT-based materials so that only the size of the 
computational cell and the coordinates of the center of mass of 
CNTs are scaled in the algorithm, while the relative positions of 
nodes in the CNTs remain unaffected by the scaling. This 
procedure ensures that the scaling affects the inter-tube 
interaction forces, whereas much stiffer internal stretching and 
bending interactions remain unchanged.  A test simulation 
illustrated in Fig. 6 demonstrates that the samples can be 
quickly compressed up to a density of 0.6 g/cm3 and even 
higher. The compressed state of the sample is characterized by 
strong repulsive interactions among the CNTs (red segments in 
Fig. 6b). At the same time, the nanotubes attain more curved 
shapes during the compression, resulting in the increase in the 
internal stretching and bending energies of the CNTs. 

 

 

 
 
Figure 6. Snapshots of a system of CNTs shown in Fig. 3a after 
compression in the modified Berendsen barostat up to densities of 0.2 
g/cm3 (a) and 0.6 g/cm3 (b).  

 
Figure 4. Random network of CNT bundles observed at 0.6 ns in a 
simulation performed for a sample consisting of 1543 (10,10) CNTs.  
The length of each CNT is equal to 200 nm, the dimensions of the 
system are 500×500×20 nm3, and the density is 0.2 g/cm3. Only a 
small part of the system is shown in the figure. 

(a)

(b)
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The total energy of the system, E+U as defined by Eqs. (3) 
and (4), is a quantity that must be conserved in a dynamic 
simulation based on the integration of the classical equations of 
motion, Eq. (2). The accuracy of the model, therefore, can be 
assessed by monitoring the quality of the total energy 
conservation during the simulations.  With an appropriate 
choice of the timestep of integration of the equations of motion 
(on the order of 10 fs), the numerical drift in the total energy in 
the simulations is found to be relatively small even in long 
simulations performed for tens of nanoseconds. In particular, in 
the simulation discussed above and illustrated in Fig. 3, the 
accumulated drift in the total energy by the time of 8 ns is less 
than 2 % of the value of the inter-tube interaction energy |UInt| 
at this time, Fig. 7.  Equally good energy conservation is 
observed for much larger 500×500×200 nm3 systems 
containing ≈15×103 nanotubes with the length of 200 nm each 
(total of 1.5×106 dynamic nodes). 

 
Analysis of multiple test simulations indicate that an 

acceptable level of the total energy conservation can not be 
achieved without the introduction of the weighted approach 
briefly described in Section 4.2. This approach ensures a 
smooth variation of the interaction energy UTT during the 
relative motion of interacting nanotubes. All attempts to 
directly apply the tubular potential, Eq. (23), for the calculation 
of the segment-chain potential USC (e.g., by defining the 
‘effective’ straight tube with the help of the closest segment-
segment pair) resulted in a large drift in the total energy that 
becomes unacceptable at the time-scale of nanoseconds. 

The requirements for achieving the accurate conservation 
of the total energy also include a careful numerical treatment of 
the tubular potential given by Eq. (23). The implementation of 
this equation in the computational algorithm should account for 

conditions when 0sin →α , resulting in the undefined form of 
the right part of Eq. (23), as well as for the presence of regions 
of very high gradients of Φ(h,ζ).  The computationally-efficient 
methods developed for dealing with these and other numerical 
problems are described elsewhere [28]. 

SUMMARY 

A novel tubular potential method for representation of the 
interaction between tubular dynamic elements is developed and 
implemented in a mesoscopic computational model for 
simulation of the collective behavior of CNTs in CNT-based 
materials.  The method includes a computationally-efficient 
tubular potential for interaction between a segment and a 
straight tube, as well as a weighted approach for an accurate 
representation of the interactions among curved nanotubes. The 
tubular potential can be parameterized for an arbitrary law of 
interaction between surface elements representing atoms or 
molecules that build up the tubular structures and, therefore, 
can be adopted for simulation of systems consisting of various 
nano- and micro-tubular elements, such as nanotubes, 
nanorods, and micro-fibers.  

First applications of the mesoscopic model enabled by the 
tubular potential demonstrate that the model exhibits good total 
energy conservation and is capable of simulating the structural 
evolution in CNT-based materials on a timescale extending up 
to tens of nanoseconds.  The model predicts spontaneous self-
assembly of CNTs into a continuous network of bundles with 
partial hexagonal ordering of CNTs in the bundles. The 
structures produced in the simulations are qualitatively similar 
to the structures of CNT films and bucky paper observed in 
experiments. The development of the model opens up 
possibilities to study the effective properties of CNT-based 
materials defined by the collective behavior of thousands of 
interacting nanotubes.   
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